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We present a novel interdisciplinary framework that bridges synchronization theory and multi-
agent Al systems by adapting the Kuramoto model to describe the collective dynamics of heteroge-
neous Al agents engaged in complex task execution. By representing Al agents as coupled oscillators
with both phase and amplitude dynamics, our model captures essential aspects of agent specializa-
tion, influence, and communication within networked systems. We introduce an order parameter
to quantify the degree of coordination and synchronization, providing insights into how coupling
strength, agent diversity, and network topology impact emergent collective behavior. Furthermore,
we formalize a detailed correspondence between Chain-of-Thought prompting in Al reasoning and
synchronization phenomena, unifying human-like iterative problem solving with emergent group
intelligence. Through extensive simulations on all-to-all and deterministic scale-free networks, we
demonstrate that increased coupling promotes robust synchronization despite heterogeneous agent
capabilities, reflecting realistic collaborative AI scenarios. Our physics-informed approach estab-
lishes a rigorous mathematical foundation for designing, analyzing, and optimizing scalable, adap-
tive, and interpretable multi-agent Al systems. This work opens pathways for principled orches-
tration of agentic Al and lays the groundwork for future incorporation of learning dynamics and

adaptive network architectures to further enhance system resilience and efficiency.

I. INTRODUCTION

The study of collective behaviour in complex networks
has long been a cornerstone of applied mathematics,
physics, biology and several other disciplines [1-6]. In
computer science and artificial intelligence (AI), however,
AT agents have only recently gathered attention whereby;,
enterprises are seeking to automate tasks via multiple
agents interacting on a network, to accomplish a com-
mon goal [7-10]. Historically, theories from physics have
provided deep insights into AT and machine learning [11-
14].

In this paper, we seek to use this inspiration to pro-
pose a novel correspondence between collective behaviour
(particularly, synchronization) and agentic AI applica-
tions [15]. We adapt the Kuramoto model (KM), a
paradigmatic framework in synchronization theory, to de-
scribe and analyze the collective behaviour of Al agents
in collaborative tasks [16]. This innovative approach al-
lows us to:

e represent the synchronization and coordination of
AT agents working toward a common goal.

e interpret the parallels between the model’s compo-
nents and dynamics with those of Al agents.

e quantify and optimize agent interactions using es-
tablished physics-based parameters.

By bridging the physics of complex systems and Al, we
expect to open new avenues in designing efficient agentic
AI systems. This interdisciplinary approach leverages
the rich theory and practice of collective behaviour and
network theory, potentially aiding our understanding and
implementation of multi-agent Al systems.

* Corresponding author: chiranjitmitradu@gmail.com

A. Motivation

Chain-of-Thought prompting has recently emerged as
a groundbreaking concept in agentic AI, revolutioniz-
ing the way AI systems approach complex reasoning
tasks [17]. This innovative technique guides AI mod-
els to break down intricate problems into sequential,
logical steps, mirroring human-like thought processes.
By encouraging Al to articulate intermediate reason-
ing, Chain-of-Thought prompting significantly enhances
problem-solving capabilities, improves decision-making
processes, and increases the transparency of Al-generated
outputs [18]. As visual articulation in this regard, Fig. 1
provides a simple illustration of a complete network of
AT agents coordinating on a complex task.

The dynamics of Chain-of-Thought (CoT) prompt-
ing techniques in Al and the evolution of agents in a
Kuramoto-like system share intriguing parallels that can
provide insights into complex problem-solving and col-
laborative dynamics. The following is a correspondence
between them:

e Iterative Reasoning Process:

o CoT: In Chain-of-Thought prompting, the
model generates a series of intermediate steps,
each building upon the previous one to reach
a conclusion.

o KM: Agents in the system evolve their phases
and amplitudes over time, with each itera-
tion influenced by their previous state and the
states of other agents.

e Influence of Context:

o CoT: Each step in the reasoning chain is in-
fluenced by the context provided by previous
steps and the initial prompt.
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o KM: The evolution of an agent’s phase and
amplitude is influenced by its own natural fre-
quency and the states of neighbouring agents.

e Emergent Coherence:

o CoT: As the chain of thought progresses, a
coherent line of reasoning emerges, leading to
a more robust and justifiable conclusion.

o KM: As agents interact over time, their phases
may synchronize, leading to a coherent col-
lective behaviour represented by a high order
parameter.

e Adaptive Complexity:

o CoT: The complexity of the reasoning chain
can adapt to the difficulty of the problem, with
more steps for more complex tasks.

o KM: The amplitude of agents can evolve to
represent their relative importance or activity
level in solving a complex task.

e Convergence to Solution:

o CoT: The reasoning process converges towards
a final answer or solution to the posed prob-
lem.

o KM: The system may converge to a synchro-
nized state, representing a collective solution
or consensus.

e Robustness to Perturbations:

o CoT: A well-structured chain of thought can
be more robust to small errors or uncertainties
in individual steps.

o KM: A strongly coupled system of agents can
maintain synchronization despite small per-
turbations to individual agents.

By drawing these correspondences, we can see how the
collaborative dynamics of agents in a Kuramoto-like sys-
tem mirror the cognitive processes simulated by Chain-
of-Thought prompting. This analogy suggests that prin-
ciples from synchronization theory could potentially in-
form the development of more sophisticated prompting
techniques, leading to more robust and coherent reason-
ing in Al systems.
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FIG. 1. (Color online) Ilustration of a complete network of
AT agents coordinating on a complex task, where each agent’s
respective phase reflects its current position along its chain of
thought.

B. Background

The past couple of years have witnessed major ad-
vancements at the confluence of AI agents research,
mathematical modeling, and complexity science. Recent
literature now demonstrates a clear evolution from mono-
lithic language models toward sophisticated multi-agent
architectures - termed “agentic AI”, which harness coor-
dinated networks of specialized agents to address com-
plex challenges in reasoning, adaptation, and problem-
solving [19]. The integration of rigorous mathematical
frameworks and methodologies from network science is
transforming our approach to the organization, analysis,
and optimization of agent collectives [20]. Contemporary
agentic systems employ advanced coordination strategies,
such as distributed task allocation, hierarchical and peer-
to-peer control, and consensus protocols, all grounded
in principles from complexity theory and dynamical net-
works [21, 22]. Recent surveys and technical analyses fur-
ther underscore the importance of large language mod-
els (LLMs) as reasoning engines, facilitating enhanced
autonomy, tool utilization, and dynamic memory within
agentic workflows [23, 24].

Importantly, emerging studies indicate that well-
orchestrated agent collectives can surpass the capabil-
ities of single-agent models, exhibiting phenomena such
as collective intelligence, shared memory, and robust spe-
cialization through networked interaction [19, 24]. This
convergence of Al and complexity science is exemplified
by new frameworks that bridge macro-scale system archi-
tectures with local agent learning, leveraging both math-



ematical order parameters and scalable multi-agent co-
ordination paradigms [20, 21]. As research continues to
incorporate advanced network topologies, adaptive inter-
action protocols, and distributed reasoning, the field is
progressing towards a more principled and quantitative
foundation for multi-agent AI, positioning it as a trans-
formative paradigm for scientific inquiry and practical
deployment [25, 26].

Recent research further highlights the growing impor-
tance of context-aware and LLM-based multi-agent Al
systems, which leverage coordinated networks of hetero-
geneous agents to autonomously tackle complex tasks
with dynamic specialization and communication [27-30].
These advances closely align with the synchronization-
based frameworks presented in this work, capturing key
features such as agent influence, network effects, and
scalable collaboration. Additionally, the need for trans-
parency and interpretability in agent interactions [31], as
well as the integration of multimodal information [32],
emphasizes the relevance of adaptable, physics-informed
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The dynamical equations of the networked system read
e N

Xi = Fz (XZ) + N ZA”H” (Xi, Xj) s (2)
j=1

where:

e ¢ is the overall coupling strength.

e A is the (directed) adjacency matrix which cap-
tures the interactions between the nodes such that
A;j # 0 if node j influences node 4.

o H;; [(R”l7 Rd) — Rd] is an arbitrary coupling
function from node j to node 7 such that H;; and
H;; may be different, in general.

For the illustrations in this paper (Section III), we con-
sider non-identical nodal dynamics, symmetric adjacency
matrices and non-identical coupling functions.

B. Kuramoto Model Dynamics

Let us consider a network of N Al agents, each rep-
resented by a phase variable 6;(¢) and amplitude 7;(¢),

models capable of representing and analyzing complex
AT agent dynamics. This convergence of modern Al
research motivates the development of unified mathe-
matical frameworks (such as ours) that support efficient
coordination, adaptability, and interpretability in next-
generation agentic Al systems.

II. METHODS
A. General Dynamics

In the following, we outline the general equations of
motion for all nodes/agents of a networked dynamical
system. Consider a network of N agents where the in-
trinsic dynamics of the i*" agent (represented by the d-
dimensional state vector x;(t) = (z}, z7, ..., mf)T) at
time t is described by:

* , N. (1)

?

(

wherei=1,2, ..., N:
. ¢ N
91' = w; + 7N E Aij{rj sin (9] —Hi)7

j=1
. XN

=1 (A—17) + N ZAijrj cos (0 — 0;),
j=1

where:

e 0, is the phase or state of progress of agent i (rep-
resenting the progress of the task).

e 1; is the amplitude or strength of agent i (repre-
senting workload or importance).

e w; is the natural frequency or inherent processing
speed of agent 1.

e )\ is a parameter controlling amplitude dynamics.

e ¢ is the coupling strength between agents (repre-
senting inter-agent communication).

e A;; is the adjacency matrix (representing the net-
work connections between agents).

The natural frequency parameter (w;) not only reflects
the intrinsic processing speed of each agent, but can also
be interpreted as encoding fundamental aspects of the
agent’s persona or operational profile, such as its pre-
ferred pacing, the domain of expertise, or the character-
istic behavioral rhythm [33].

In this model:



e the sine term in the equation promotes synchro-
nization between connected agents, while the natu-
ral frequency term allows for individual differences
in processing speed.

e the phase equation now includes the amplitude 7;
in the coupling term, allowing stronger oscillators
to have a greater influence on the phase dynamics.

e the amplitude equation includes a term r; (A — r?)

that governs the intrinsic amplitude dynamics.

e the coupling in the amplitude equation uses a co-
sine function, complementing the sine function in
the phase equation.

By analyzing the dynamics of this adapted Kuramoto
model, we can gain insights into how the multi-agent Al
system coordinates and progresses towards task comple-
tion. The model allows us to study phenomena such as:

e emergence of synchronized sub-groups (specialized
teams).

e critical coupling strength for effective collabora-
tion.

e impact of network topology on task efficiency.
e resilience to perturbations or agent failures.

This mathematical framework provides a foundation for
designing and optimizing multi-agent Al systems for col-
laborative task completion.

C. Order Parameter

To model task completion, we can introduce an order
parameter R(t) given by:

N
R() = | Do) @

where:
e R(t) is the magnitude of synchronization at time ¢.
e N is the total number of agents.
e 0,(t) is the phase of agent j at time ¢.
e r;(t) is the amplitude of agent j at time ¢.
e ¢ is the imaginary unit.
e | - | denotes the absolute value or magnitude.

The order parameter serves as a crucial metric for in-
terpreting coordination among Al agents, particularly in
terms of their synchronization and collective behaviour:

e the value of R(t) ranges from 0 to 1.

4

e when R(t) = 0, it indicates complete incoherence
among the agents, meaning they are not synchro-
nized at all.

e conversely, when R(t) = 1, it signifies perfect syn-
chronization (task completion), where all agents are
moving in unison.

e values between 0 and 1 indicate varying degrees of
coordination.

e for instance, an R(t) value of 0.9 suggests that a
large majority of agents are well-coordinated, while
a value around 0.5 indicates moderate coordination,
with some agents out-of-sync.

4
S
P
@ = (a)
T2 g
1
0 2 4 6 8 10
1.0 E——
~ Y5 T
Tg'o.a //
5 // (b)
© J
06 /
0 2 4 6 8 10
Z10
8
© 0.8
5
© 0.6 ()
o
S 0.4
e 0 2 4 6 8 10
Time (t)
FIG. 2. (Color online) Temporal evolution of (a) phases.
(b) radii. (c) order parameter for an all-to-all network of

Kuramoto-like agents.

D. Homogeneous vs. Heterogeneous AI Agents

Synchronization can indeed be achieved when all
agents are identical, but this scenario is less interest-
ing and realistic for multi-agent AI systems. It does not
capture the richness of real-world multi-agent systems
where agents have different capabilities and specializa-
tions. The more compelling case involves heterogeneous
agents, where they synchronize despite diversity.

E. Task-specific Adaptations

Following task-specific adaptations are possible as fur-
ther adjustments for the model in Eq. (3):



e Sub-task allocation: Divide the agents into sub-
groups with different natural frequencies w; to rep-
resent specialization in sub-tasks.

e Dynamic coupling: Adjust e based on task progress
or difficulty, increasing coupling when more coordi-
nation is needed.

o Network topology: Design A;; to reflect the optimal
communication structure for the task.

e FExternal influences: Incorporate task-specific con-
straints, deadlines, or environmental factors.

F. Application Example: Modeling AI Agent
Orchestration for HR Tasks

To concretely illustrate how our model can be applied
to multi-agent Al task orchestration, consider a company
delegating HR-related tasks (such as processing job ap-
plications, handling payroll queries, and scheduling in-
terviews) to a set of specialized AI agents. Here, each
agent represents a unit (e.g., recruiting, payroll, com-
pliance) and possesses computational resources, such as
number of available tokens for LLM usage, share of com-
pute power allocated, and access to organizational data
for its operations [33].

e Resource Sharing: The amplitude r; can, in such
a set-up, be mapped directly to the computational
resources available to an agent ¢, for example, the
number of tokens each agent is authorized to send
to the central LLM service, or its share of cloud
compute time. When the total resource pool is con-
strained, r; naturally embodies both the capacity of
an agent and its live resource budget. The coupling
structure (eand A) can represent not only commu-
nication between agents but also explicit sharing or
borrowing of tokens/compute among them, mirror-
ing real-world resource dependencies.

e Dynamic Agent Orchestration: In agentic Al
workflows, a central orchestrator dynamically de-
cides how many agents to instantiate, what their
roles should be and how they should be intercon-
nected to complete a task [34, 35]. For example, if
there is a surge in job applications, the orchestrator
may increase the number of recruiting agents and
adjust the network topology for more efficient inter-
nal communication. Eq. (3) and related dynamics
allow us to quantitatively determine the minimal
set and appropriate connections of agents by opti-
mizing coupling and resource assignment, ensuring
that the emergent network achieves a high order
parameter R(t), i.e., effective task completion.

e Implications for System Design: Our model
thus serves as a principled tool for:

o determining the number and specialization of
AT agents required for a given HR task, based
on task load and current resource availability.

o configuring network topology (e.g., all-to-all
for rapid consensus, scale-free for hierarchical
management) to best suit dynamic workloads.

o optimizing resource and token-sharing poli-
cies, making sure that no key sub-task is
starved of compute/tokens while maintaining
global system efficiency.

o simulating system responses to changes in
workload, agent availability, or resource lim-
itation, supporting robust and adaptive HR
AT deployments.

This approach generalizes to any business process where
tasks, resource sharing, and adaptive agent configuration
are critical for efficiency, providing both quantitative in-
sight and actionable guidance for orchestrating agent net-
works in practice.

G. Analytical Interpretation of the Radial
Dynamics

The radial dynamics in the model in Eq. (3) with am-
plitude can be interpreted as follows:

e the term r; ()\ — 7“12) represents the intrinsic dynam-

ics of the radius:

o A is a parameter that controls the intrinsic
growth rate of the radius.

o the term —r? provides a non-linear saturation
effect, which prevents unbounded growth.

This equation has two main effects:
e when 7; is small, the radius tends to grow (if A > 0).

e as r; increases, the negative 72 term becomes dom-
inant, causing the radius to decrease.

The equilibrium point for this intrinsic dynamics occurs
when 7; = v/A. In the context of Al agents:

e the radius r; can represent the influence or activity
level of an agent.

e )\ could represent the inherent capability or re-
sources of the agent.

e the saturation effect models limitations on an
agent’s growth or influence.

N

The coupling term = » Aj;r;cos(f; —0;) can repre-
j=1

sent:

e resource sharing between agents.



e mutual reinforcement of activity levels.
e competition for limited resources.

This model allows for dynamic changes in agent impor-
tance or activity, which can be crucial in complex multi-
agent Al systems where different agents may need to take
on varying levels of responsibility depending on the task
at hand.

H. Contextual Interpretation of the Radial
Dynamics for AI Agents

The inclusion of a radius term in the Kuramoto model
can be interpreted as representing the strength or influ-
ence of individual Al agents within a multi-agent Al sys-
tem. This interpretation allows for a more nuanced rep-
resentation of agent interactions and their impact on the
overall system dynamics. In the following, we interpret
the radius term in the context of Al agents working to-
gether:

e Agent Influence:

o The radius term can be seen as a measure of
an agent’s capability or effectiveness in con-
tributing to the collective task.

o A larger radius would indicate a more influ-
ential or capable agent, while a smaller radius
would represent a less impactful one.

e Dynamic Adaptation:

o Learning and Improvement: As agents
improve their performance or acquire new
skills, their radius (influence) may increase.

o Resource Management: The radius could
reflect an agent’s current resource allocation
or energy level, fluctuating as resources are
consumed or replenished.

o Task Relevance: An agent’s radius might
grow when its specialization is particularly rel-
evant to the current sub-task and shrink when
less relevant.

e Interaction Dynamics:

o Weighted Contributions: Agents with
larger radii have a stronger effect on the
phases of other agents, representing a form of
weighted decision-making or influence on the
collective behaviour.

o Adaptive Coupling: The overall coupling
strength between agents becomes dynamic,
potentially leading to more flexible and re-
sponsive collective behaviour, allowing the
system to adapt to changing conditions or task
requirements.

e System-level Implications:

o Emergent Leadership: Agents with consis-
tently larger radii may naturally emerge as
leaders in the system, guiding the collective
behaviour more strongly. This can result in a
hierarchical structure within the multi-agent
Al system, potentially improving coordination
and decision-making.

o Specialization: The radius term could rep-
resent specialization in sub-tasks, with agents
having larger radii in their areas of exper-
tise. This allows the system to leverage the
strengths of individual agents more effectively.

o System Robustness: The system may be-
come more robust to individual agent failures,
as the impact of low-radius (potentially mal-
functioning) agents is naturally minimized.

By incorporating the radius term, the model can cap-
ture more complex dynamics of Al agent collaboration,
allowing for heterogeneous agent capabilities, adaptive
influences, and emergent behaviours that more closely
resemble real-world multi-agent Al systems.

III. RESULTS
A. All-to-all network of Kuramoto-like agents

We simulate Eq. (3) for N = 10 AI agents, with
parameter values of A = 1.0 and ¢ = 5.0 [36]. We
choose w from a normal distribution with a mean
= 0 and standard deviation o = 0.5, ie, w ~
N (u=0,0=0.5). As a specific network topology, we
use an undirected all-to-all network with symmetric ad-
jacency matrix (A;; =A; =1,Vi=1,2,..., N). We
calculate and present the evolution of phases, radii and
order parameter of the system in Fig. 2.
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FIG. 3. (Color online) Relationship of the average order pa-
rameter ((R)) with the coupling strength (¢), for different val-
ues of standard deviation of the natural frequency of agents
(o) interacting on an all-to-all network.



Interestingly, Fig. 3 shows the relationship of the aver-
age order parameter ((R)) with the coupling strength (e),
for different values of standard deviation of the natural
frequency of agents, o € {0.1, 0.5, 1.0, 2.0}. It clearly
demonstrates that the network synchronizes better with
increasing coupling strength despite heterogeneity be-
tween individual agents in the system.

FIG. 4. (Color online) Network topology of the undirected
deterministic scale-free network of N = 81 Kuramoto-like
agents. The size of each node is proportional to its degree
and the color (red, green and blue) indicates the level (first,
second and third, respectively) of hierarchy to which the re-
spective node belongs to.

B. Deterministic scale-free network of
Kuramoto-like agents
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FIG. 5. (Color online) Temporal evolution of (a) phases. (b)
radii. (c) order parameter for a determinstic scale-free net-
work of Kuramoto-like agents.

For the simulations on the deterministic scale-free net-
work, we consider a system of NV = 81 agents governed
by Eq. (3), setting the parameters A = 1.0 and ¢ = 30.0.
The natural frequencies w are sampled from a normal
distribution with a mean p = 0 and a standard deviation
o = 0.05, i.e., w ~ N(u=0,0=0.05). The commu-
nication structure corresponds to the undirected deter-
ministic scale-free topology depicted in Fig. 4, character-
ized by a symmetric adjacency matrix (4;; = Aj; =1
if nodes i and j are connected and A;; = Aj; = 0 oth-
erwise) [37, 38]. Note that the choice of this topology
is motivated by its correspondence with the hierarchical
corporate structures which agentic Al networks often try
to emulate. Temporal dynamics of agent phases, ampli-
tudes, and the associated order parameter are illustrated
in Fig. 5.

Notably, Fig. 6 illustrates how the average order
parameter ((R)) depends on the coupling strength
(¢) for various natural frequency dispersions, o €
{0.05, 0.10, 0.15, 0.20}. These results highlight that even
with pronounced heterogeneity among agents, the hierar-
chical scale-free network achieves enhanced synchroniza-
tion as the coupling intensity increases.

0.95
= 0.90
=
20.85
GEJ
@ 0.80
o
&
. 0.75
9]
'E slas
O 0.70 Standard Deviation of w:
g —— 0=0.05
&o.65
5 —— o0=0.10
<>( 0.60 —— o0=0.15
o=0.20
0.55
5 10 15 20 25 30 35

Coupling Strength (¢)

FIG. 6. (Color online) Relationship of the average order pa-
rameter ((R)) with the coupling strength (¢), for different val-
ues of standard deviation of the natural frequency of agents
(o) interacting on a deterministic scale-free network.

IV. CONCLUSION

In this paper, we have explored a novel synthesis be-
tween synchronization theory and multi-agent Al sys-
tems by adapting the Kuramoto model, a cornerstone
in the study of collective dynamics, to the context of
collaborative AI. By framing AI agents as oscillators
whose synchronization dynamics is governed by phase-
and amplitude-interactions, we provide a rich theoretical
foundation for analyzing and optimizing complex task
execution by heterogeneous agent collectives.

Our approach demonstrates that the Kuramoto model
can effectively represent the synchronization and coor-
dination of AI agents working toward a common goal.



By drawing parallels between the iterative reasoning pro-
cesses of Chain-of-Thought prompting and the model’s
dynamics, we have captured the nuances of agent influ-
ence and specialization, which are critical in real-world
multi-agent Al systems. The inclusion of amplitude dy-
namics allows differentiation of agent influence, dynamic
adaptation to tasks, and robustness in the presence of
agent diversity or failure. The introduction of order pa-
rameters allows us to quantify group coordination, re-
silience to perturbations, and convergence to solutions,
offering valuable insights into the efficiency and robust-
ness of agent interactions.

Through simulations on both all-to-all and scale-free
network topologies, it has been shown that increas-
ing coupling strength enhances synchronization, even
among highly heterogeneous agents. This underscores
the importance of effective communication and interac-
tion strategies in multi-agent Al systems and reflects the
model’s ability to capture real-world complexity.

This interdisciplinary approach potentially opens up
multiple avenues of research. The Kuramoto-inspired
framework offers a unified, physics-informed basis for de-
signing, monitoring, and controlling large-scale Al col-
laborations. By mathematically identifying key drivers
of collective behavior, such as coupling strength, agent

diversity, and network topology, it facilitates system-
atic optimization and orchestration of multi-agent Al
systems. Furthermore, drawing on decades of insights
from synchronization theory, this work invites a deeper
interdisciplinary exploration into the principles of self-
organization and emergent coherence, with the potential
to inform the system design and development of more so-
phisticated and resilient next-generation Al systems ca-
pable of tackling complex, collaborative tasks.

In summary, this interdisciplinary approach of combin-
ing physics-based models with AI agent dynamics both
enriches our understanding of collective behavior and
equips practitioners with practical tools for engineering
robust, scalable, and adaptive multi-agent Al systems.
Future research could further enhance these capabilities
by incorporating learning dynamics, adaptive network
structures, and more sophisticated agent models, paving
the way for more resilient and capable agentic Al sys-
tems.

ACKNOWLEDGMENTS

CM thanks his well-wishers for their support and en-
couragement. Also, CM thanks Overleaf and Perplexity.

[1] S. H. Strogatz, Exploring complex networks, Nature 410,
268 (2001).

[2] R. Albert and A.-L. Barabdsi, Statistical mechanics of
complex networks, Reviews of Modern Physics 74, 47
(2002).

[3] S. N. Dorogovtsev and J. F. Mendes, Evolution of net-
works, Advances in Physics 51, 1079 (2002).

[4] M. E. Newman, The Structure and Function of Complex
Networks, STAM Review 45, 167 (2003).

[5] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-
U. Hwang, Complex networks: Structure and dynamics,
Physics Reports 424, 175 (2006).

[6] M. Newman, Networks: An Introduction (Oxford Uni-
versity Press, New York, 2010).

[7] S. Casper, L. Bailey, R. Hunter, C. Ezell, E. Ca-
balé, M. Gerovitch, S. Slocum, K. Wei, N. Jurkovic,
A. Khan, et al., The Al Agent Index, arXiv preprint
arXiv:2502.01635 (2025), arXiv:2502.01635.

[8] F. Bousetouane, Agentic Systems: A Guide to Trans-
forming Industries with Vertical AI Agents, arXiv
preprint arXiv:2501.00881 (2025), arXiv:2501.00881.

[9] A. Mukherjee and H. H. Chang, Agentic AI: Auton-
omy, Accountability, and the Algorithmic Society, arXiv
preprint arXiv:2502.00289 (2025), arXiv:2502.00289.

[10] 1. Okpala, A. Golgoon, and A. R. Kannan, Agentic Al
Systems Applied to tasks in Financial Services: Model-
ing and model risk management crews, arXiv preprint
arXiv:2502.05439 (2025), arXiv:2502.05439.

[11] J. J. Hopfield, Neural networks and physical systems with
emergent collective computational abilities, Proceedings
of the National Academy of Sciences 79, 2554 (1982).

[12] D. J. Amit, H. Gutfreund, and H. Sompolinsky, Statisti-

cal mechanics of neural networks near saturation, Annals
of Physics 173, 30 (1987).

[13] G. Tkacik, E. Schneidman, M. J. Berry II, and W. Bialek,
Spin glass models for a network of real neurons, arXiv
preprint arXiv:0912.5409 (2009), arXiv:0912.5409.

[14] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations, Journal of Computational
Physics 378, 686 (2019).

[15] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchroniza-
tion: A Universal Concept in Nonlinear Sciences, Vol. 12
(Cambridge University Press, Cambridge, 2003).

[16] F. A. Rodrigues, T. K. D. Peron, P. Ji, and J. Kurths,
The Kuramoto model in complex networks, Physics Re-
ports 610, 1 (2016).

[17] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia,
E. Chi, Q. V. Le, D. Zhou, et al., Chain-of-Thought
Prompting Elicits Reasoning in Large Language Mod-
els, Advances in Neural Information Processing Systems
35, 24824 (2022).

[18] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwa-
sawa, Large Language Models are Zero-Shot Reasoners,
Advances in Neural Information Processing Systems 35,
22199 (2022).

[19] K.-T. Tran, D. Dao, M.-D. Nguyen, Q.-V. Pham,
B. O’Sullivan, and H. D. Nguyen, Multi-Agent Collab-
oration Mechanisms: A Survey of LLMs, arXiv preprint
arXiv:2501.06322 (2025), arXiv:2501.06322.

[20] J. Hu and Z. Peng, Mathematical Methods Applied in
Artificial Intelligence and Multi-Agent Systems (MDPI-
Multidisciplinary Digital Publishing Institute, Basel,


https://www.overleaf.com
https://www.perplexity.ai
https://doi.org/10.1038/35065725
https://doi.org/10.1038/35065725
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1080/00018730110112519
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://arxiv.org/abs/2502.01635
https://arxiv.org/abs/2501.00881
https://arxiv.org/abs/2502.00289
https://arxiv.org/abs/2502.05439
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1016/0003-4916(87)90092-3
https://doi.org/10.1016/0003-4916(87)90092-3
https://arxiv.org/abs/0912.5409
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1017/CBO9780511755743
https://doi.org/10.1017/CBO9780511755743
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.2205.11916
https://doi.org/10.48550/arXiv.2205.11916
https://arxiv.org/abs/2501.06322
https://doi.org/10.3390/books978-3-7258-1896-9
https://doi.org/10.3390/books978-3-7258-1896-9

2024).

[21] Y. Xiao, G. Shi, and P. Zhang, Towards Agentic Al
Networking in 6G: A Generative Foundation Model-
as-Agent Approach, arXiv preprint arXiv:2503.15764
(2025), arXiv:2503.15764.

[22] R. Agranat and M. S. Gal, Fueling Concentration: Net-
work Effects and AI Agents, Network Law Review,
Spring , 2016 (2025).

[23] Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu,
L. Jiang, X. Zhang, S. Zhang, J. Liu, et al., AutoGen:
Enabling Next-Gen LLM Applications via Multi-Agent
Conversation, in First Conference on Language Model-
ing (2024).

[24] B. Ni and M. J. Buehler, MechAgents: Large language
model multi-agent collaborations can solve mechanics
problems, generate new data, and integrate knowledge,
Extreme Mechanics Letters 67, 102131 (2024).

[25] C. S. de Witt, Open Challenges in Multi-Agent Security:
Towards Secure Systems of Interacting Al Agents, arXiv
preprint arXiv:2505.02077 (2025), arXiv:2505.02077.

[26] P. Sen and S. M. Jakkaraju, Modeling AI-Human Col-
laboration as a Multi-Agent Adaptation, arXiv preprint
arXiv:2504.20903 (2025), arXiv:2504.20903.

[27] H. Du, S. Thudumu, R. Vasa, and K. Mouzakis, A
Survey on Context-Aware Multi-Agent Systems: Tech-
niques, Challenges and Future Directions, arXiv preprint
arXiv:2402.01968 (2024), arXiv:2402.01968.

[28] Z. Xi, W. Chen, X. Guo, W. He, Y. Ding, B. Hong,
M. Zhang, J. Wang, S. Jin, E. Zhou, et al., The rise and
potential of large language model based agents: a survey,
Science China Information Sciences 68, 121101 (2025).

[29] T. Guo, X. Chen, Y. Wang, R. Chang, S. Pei, N. V.
Chawla, O. Wiest, and X. Zhang, Large Language
Model based Multi-Agents: A Survey of Progress and

Challenges, arXiv preprint arXiv:2402.01680
arXiv:2402.01680.

[30] S. Han, Q. Zhang, Y. Yao, W. Jin, and Z. Xu,
LLM Multi-Agent Systems: Challenges and Open
Problems, arXiv preprint arXiv:2402.03578  (2024),
arXiv:2402.03578.

[31] A. Chan, C. Ezell, M. Kaufmann, K. Wei, L. Hammond,
H. Bradley, E. Bluemke, N. Rajkumar, D. Krueger,
N. Kolt, et al., Visibility into AT Agents, in Proceedings
of the 2024 ACM Conference on Fairness, Accountability,
and Transparency (2024) pp. 958-973.

[32] Z. Durante, Q. Huang, N. Wake, R. Gong, J. S. Park,
B. Sarkar, R. Taori, Y. Noda, D. Terzopoulos, Y. Choi,
et al., Agent Al: Surveying the Horizons of Multimodal
Interaction, arXiv preprint arXiv:2401.03568 (2024),
arXiv:2401.03568.

[33] M. Lanham, Al Agents in Action (Manning Publications,
New York, 2025).

[34] R. Sapkota, K. I. Roumeliotis, and M. Karkee, AT Agents
vs. Agentic AI: A Conceptual Taxonomy, Applications
and Challenges, arXiv preprint arXiv:2505.10468 (2025),
arXiv:2505.10468.

[35] S. Kim, Y. Yu, and H. Seo, Artificial intelligence or-
chestration for text-based ultrasonic simulation via self-
review by multi-large language model agents, Scientific
Reports 15, 12474 (2025).

[36] The code and data supporting this study are available on
GitHub (subject to request and permission) at: https:
//github.com/chiranjitmitra/sync_ai_agents.

[37] A.-L. Barabdsi, E. Ravasz, and T. Vicsek, Deterministic
scale-free networks, Physica A: Statistical Mechanics and
its Applications 299, 559 (2001).

[38] C. Mitra, A. Choudhary, S. Sinha, J. Kurths, and R. V.
Donner, Multiple-node basin stability in complex dynam-
ical networks, Physical Review E 95, 032317 (2017).

(2024),


https://arxiv.org/abs/2503.15764
https://doi.org/10.2139/ssrn.5250253
https://doi.org/10.2139/ssrn.5250253
https://doi.org/10.48550/arXiv.2308.08155
https://doi.org/10.48550/arXiv.2308.08155
https://doi.org/10.1016/j.eml.2024.102131
https://arxiv.org/abs/2505.02077
https://arxiv.org/abs/2504.20903
https://arxiv.org/abs/2402.01968
https://doi.org/10.1007/s11432-024-4222-0
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2402.03578
https://doi.org/10.1145/3630106.3658948
https://doi.org/10.1145/3630106.3658948
https://doi.org/10.1145/3630106.3658948
https://arxiv.org/abs/2401.03568
https://www.simonandschuster.com/books/AI-Agents-in-Action/Micheal-Lanham/In-Action/9781633436343
https://arxiv.org/abs/2505.10468
https://doi.org/10.1038/s41598-025-97498-y
https://doi.org/10.1038/s41598-025-97498-y
https://github.com/chiranjitmitra/sync_ai_agents
https://github.com/chiranjitmitra/sync_ai_agents
https://doi.org/10.1016/S0378-4371(01)00369-7
https://doi.org/10.1016/S0378-4371(01)00369-7
https://doi.org/10.1103/PhysRevE.95.032317

	Synchronization Dynamics of Heterogeneous, Collaborative Multi-Agent AI Systems
	Abstract
	Introduction
	Motivation
	Background

	Methods
	General Dynamics
	Kuramoto Model Dynamics
	Order Parameter
	Homogeneous vs. Heterogeneous AI Agents
	Task-specific Adaptations
	Application Example: Modeling AI Agent Orchestration for HR Tasks
	Analytical Interpretation of the Radial Dynamics
	Contextual Interpretation of the Radial Dynamics for AI Agents

	Results
	All-to-all network of Kuramoto-like agents
	Deterministic scale-free network of Kuramoto-like agents

	Conclusion
	Acknowledgments
	References


